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ABSTRACT

Equivalence Testing for FORTRAN Mutation System
*J

Using Data Flow Analysis

Akihiko Tanaka

67 Pages

j Directed by Dr. Richard A. DeMillo

-Program mutation is a new approach to program

; * testing, a method designed to test whether a program Is

either correct or radically incorrect. It requires the

creation of a nearly correct program called a mutant from a

) program P. An adequate set of test data distinguishes all

mutants from P by comparing the outputs. Obviously, an" 4
equivalent mutant, which performs identically to P, produces

*D the same outputs as those of P. Thus, for adequate data

selection, It is desirable that an equivalent mutant be

excluded from the testing process. For this purpose, the

system equivalence command has been implemented as an

equivalent mutant detector. As yet, the command has not

been automated. Automatic detection by this command is

*implemented here as an application of data flow analysis.

Algorithms and implementation techniques of data flow

analysis are described. Also its application as an

* automatic detector is described.



1

CHAPTER I

INTRODUCTION

In conventional program tesing methods, a program is

considered as a black box and tested for input cases to

execute all statements in the program at least once. Then

the outputs produced are checked for correctness. The fun-

damental question in program testing is:

If a program is correct on a finite number of test

cases, is it correct in general ?

Even if the test results are correct, it does not guarantee

the absence of errors, or program correctness. Program

testing can be used to discover the presence of errors, but

not their absence. However, confidence in the reliability

of a program can be increased by different testing

I approaches. For Instance, a selection of test cases based

on the program structure is more reliable than a random

selection [Huan] and symbolic execution is more reliable

than execution on numeric data [Howd).

Most testing strategies appeared in 1970's and some

are described in [GG] and [Huan]. Program mutation is a

relatively new approach to program testing, a method

designed to test whether a program is either correct or

radically Incorrect [DLS]. By radically incorrect is meant

that a program contains errors due to grossly misunderstand-

ing the progrm specification. Many errors may remain

undetected even when every statement In a program is
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executed at least once. On the other hand, if different

parts of a program are executed over data which takes into
-

account the kind of errors that can occur in that part of

the program, then a significant number of undetected errors

will be detected. Mutation testing can construct test data

of this type.

Program mutation requires the creation of nearly

correct programs called mutant programs (the precise defini-

tion of a mutant will be described later). Assuming that a

program P performs properly with a set of test data T and a

mutant program P' is generated from .P, if T distinguishes P

and any P', that is, all outputs differ, then T is indeed a

comprehensive set of test data; whereas if some P's do not

change the test results, but since they might change on

augumented test data T', T is inadequate.

To achieve the design goal of program mutation,

interactive program mutation systems have been implemented

for several different languages such as FORTRAN and COBOL.

One version of mutation systems, the Fortran Mutation System

(FMS.2), was designed primarily as an experimental device

for the mutation research groups at the Georgia Institute of

Technology and Yale University. This system produces

programs wnich differ from the original one in very simple

ways: a single change is made on a statement. For example,

0

ii
I r . . ...



may be changed as follows:

I = .,[ + 1 1 was replaced with J

I =I±. 1 ;+ was replaced with

I = I + .2 1 was replaced with 2.

A statement generated by the system as shown above is

referred to as a mutant and a program which differs from the

original is referred to as a mutant program.

During the course of execution of all mutants created

by the system, mutants are classified into three categories:

dead, live and equivalent mutant. By a dead mutant is meant

that a mutant program is distinguished from the original by

either failing to produce any result or producing a

different result, whereas by a live mutant is meant that a

mutant program produces the same result as the original by

testing data sets. An equivalent mutant is defined as one
in which the mutant program performs identically to the

original, that is, the control-path of this mutant program

is equivalent to that of the original.

As mentioned above, a set of test data T is

inadequate unless every result of the mutation run is

different. In other words, some live mutant programs which

should have failed did not. Mutation testing must continue

by executing live mutants on augumented test data T'.

However, if any equivalent mutant is detected from live

mutants before their execution, it is eliminated from a live

-Aatpormpoue h am euta h rgnlb
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mutant list. It causes the decre se of mutant runs.

Therefore detection of equivalnt mutafts plays an important

role in improving system performance.

Then the question arises: 
a

How are equivalent mutants det cted ?

In the current version of the FORTRAN Mutation System,

FMS.2, some equivalent mutants can e detected, though the

process is not automatic: a user mus4 provide information

to the system equivalence command is ued from the terminal.

For instance, consider the following xample:
I =

J = I + 1 .

A mutant derived from the above statement is

J = AB (I) + 1.

Since I is greater than zero, I is always equal to ABS(I).

Thus, the mutant does not affect the original, that is, this

mutant is equivalent. It can be detected with user

assistance, i.e., the user executes an equivalence command

which tells the system that the value of I is greater than

zero. The format of an equivalence command will be discus-

sed in Chapter III. The above example is a very simple
0

case. However, recognition of values of each variable at a

certain point in a program, if the program flow is com-

plicated, is difficult and tedious, leading to the omission

of variables or mis-setting of their values. Thus,

automatic equivalent mutant detectors are desirable.

(i
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If detection of equivalent mutants is to be

automated, a systematic mechanism is required for its

implementation. This mechanism must provide as output the

arguments needed for execution of the system equivalence

command. As discussed later in Chapter III, the arguments

of this command are variables and their values at a given

point of a program. Because of these requirements and the

ease of applicability and implementation, data flow analysis

was chosen.

Prior to the discussion of the system flow of the

automatic detector shown in Figure 1.1, data flow analysis

and its terminology are briefly described here. Data flow

analysis is a static analysis method considering data items,

or variables in a program flow graph. Data flow is a

control path of a program with information regarding

variables. This information contains whether any reference

to some variable lies in a control flow or interrupted by

another value assigned to the variable. In order to
S

recognize the information, a flow graph of the program is

created by partitioning the program into basic blocks. A

basic block is defined as a sequence of statements to be

executed that have no branches but the first and the last

statement of the sequence. Nodes of the flow graph

represent basic blocks.

...S. . , IIII Iu
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After the creation of the flow graph. the graph is

reduced by recognizing an interval that represents a new

node of a reduced graph. An 'interval' is a group of nodes

whose edges go to nodes inside the group except for edges at

the entrance and the exit. Graph reduction, frequently

discussed in the rest of this thesis, is defined so that

nodes in an interval are merged into a single node and all

edges from inside the interval are deleted and new edges to

nodes in other intervals are created. A graph is reduced in
S

the above manner until it is irreducible. Finally, the

information regarding variables is built by using all flow

graphs. Based on this information, data flow analysis can

determine at a given node of a program flow graph which

variables 'reach' a node and are available at the exit from

the node. By 'reach' is meant that a variable is defined at
*

one node and is available at the entrance to another node.

The details of data flow analysis will be discussed in the

next chapter.

The system as shown in Figure 1.1 was designed and

implemented for automatic detection of equivalent mutants.

The FORTRAN Mutation System, FMS.2 [BLSDJ, which includes a

scanner, a parser and a code generator, parses FORTRAN

source programs and generates intermediate codes. The basic

block routine partitions a source program into basic blocks,
S

based on intermediate codes from FMS.2 and creates a flow

graph of a source program. The interval routine reduces a



flow graph from the basic block routine as much as possible

and keeps all reduced flow graphs, from the original graph

to the final graph. All graphs generated by the basic block

routine and the interval routine are input for data flow

analysis. As output, the data flow routine produces

variables that reach each node, and variables that are

available at the exit from each node. Then an application

routine of data flow analysis creates information for an

equivalence command from output of data flow analysis.

Finally, an equivalence command is issued by the system as

if it were issued by the user.

The purpose of this thesis is to detect equivalent

mutants by automatically using data flow analysis in a

system that creates data for an equivalence command and that

issues this command automatically as if issued by the user.

A detailed discussion of data flow analysis is given in

Chapter II which includes algorithms and implementation

techniques. Chapter III covers applications, of data flow

analysis, how to use output from data flow analysis. The

conclusion in Chapter IV contains the results of the system

described in Chapter II and III. Appendix A contains an

example of data flow analysis and Appendix B contains a sam-

ple run on FMS.2 with a description of equivalent mutants.

1
___



CHAPTER II

DATA FLOW ANALYSIS

This chapter describes algorithms and implementation

techniques of data flow analysis, including the basic block

routine and the interval routine. The idea is derived from

[BC] and [AC]. Data flow analysis, a technique employed for

the system, examines data-flows other than control-flows in

a program. This analysis is based on information collected

at compile time. The FORTRAN parser on the FMS.2 system

generates intermediate codes from a source program which are

independent of a target machine and more related to a

statement in a source program than machine codes. Those
t

intermediate codes are saved in a file during program par-

sing. Because of ease of access to the file and so that the

data flow analysis system can be independent of the parser,

a flow graph is created by using these codes.

The data flow analysis system consists of three

phases: basic block, interval and data flow. Data flow

analysis requires a flow graph of a source program and

graphs reduced from the original graph. Two pre-processors

of the data flow routine, the basic block routine and the

interval routine, generates these graphs. Figure 1.1 in

Chapter I depicts the system flow of data flow analysis.

The basic block routine partitions a source program

into basic blocks and creates a flow graph. The graph

generated by this routine Is passed to the intervel routine.

• S ': ] ] . III I I' ,-
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This routine examines flows of the original graph and merges

any possible node in the graph into a single node. Then all

unnecessary edges are deleted to reduce a graph. Graph

reduction continues as far as it can. All redued graphs are

saved and passed to the data flow routine. This routine

examines data flows of a source program using all informa-

tion passed from two routines discussed above. The analysis

of data flow is based on flow graphs to see if values

assigned to variables are changed.

Prior to the further discussion of data flow

analysis, graph representation in memory is described here

(the details will be discussed later in SECTION 2.2). A

node has two different kinds of pointers that represent

edges to and edges from the node: one pointer points to a

destination node for an edge and the other points to a

source node. If a node has branches, that is, if there are

multiple edges leaving the node, all destination nodes are

linked together. Also all source nodes are linked if more

than one edge come to the node.

Section 2.1 describes the algorithms of the basic

block routine, the interval routine and the data flow

routine, and Section 2.2 describes their implementation

techniques.

0
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SECTION 2.1 Algorithms

This section discusses the details of the algorithms

of the three phases of the data flow system described above.
g

The description of the basic block routine describes how to

distinguish corresponding intermediate codes for each

FORTRAN statement and how to use these codes for partition.
S

The next sub-section discusses the algorithm of the interval

routine, i.e., detection of intervals and reduction of flow

graphs. The main phase of the data flow analysis system is

discussed in the last sub-section. The data flow routine

describes the process of determination of available

variables at each basic block.

The basic block routine referenced in Figure 1.1

partitions a FORTRAN source program into basic blocks by

using intermediate code generated by FNS.2, and then creates

a flow graph of the source program. Since the flow graph

directly corresponds to a source program, it is called the

original graph or the lowest order graph. This graph is

passed to the interval routine for reduction.

A basic block is a sequence of statements to be

executed which has only one entrance or none (the first

basic block does not have an entrance) and which has the

only exit or none (the basic block which ends with a RETURN

statement or a STOP statement does not have an exit). Thus

a basic block is considered to be a node of a flow graph.

0
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The remainder of this sub-section discusses seven bb.ic

rules of partition on a FORTRAN statement. After recogni-

tion of a statement, a basic rule is applied on the

statement. According to these rules, incoming and outgoing

edges to and from a node are determined. Also, the begin-

ning and the end of a node are determined. The basic rules

applied on a statement are:

1) A statement with a label is the entrance to a basic

block.

Prior to this statement, the last basic block must be

closed, if it is not; a new basic block beginning with this

statement will be opened because it is possible to jump into

this statement by a GOTO statement. A basic block cannot be

entered in the middle.

2) An IF statement is an exit from a basic block.

i) logical IF statement.

IF ( expression EXPR ) statement S

The intermediate codes for a logical IF statement are as

follows:

lOP 0

I codes for expression EXPR
I o
TRF index of the next statement

I codes for statement S

The first code for an IF statement is lOP and only the IF 0J statement starts with lOP. A logical IF statement is

--. --.
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distinguished from an arithmetic IF statement by including a

key code TRF; while codes for an arithmetic IF statement

include a key code AIF. A jump address is set when the

statement S is a GOTO statement. The S itself is considered

to be a basic block if S is a RETURN statement, a STOP

statement or an ASSIGNMENT statement. It is not necessary

to consider the ASSIGNMENT statement a basic block except

when it is a part of an IF statement. The IF statement is

partitioned into two basic blocks: the IF (expression EXPR)
6

itself is a basic block and the then-part statement S is

also a basic block because a value assigned to a variable in

the ASSIGNMENT statement changes if the boolean expression

EXPR is evaluated to be true (see Example II below). The

following two examples illustrate the above two cases. In

Example I, the IF statement is not partitioned into two

basic blocks because the execution of the IF statement does

not affect any values of variables (I, J and K). On the

other hnd, the execution of the IF stttement in Exomple II

might cause changes of a value of K. In this case, the

value of K depends on path selection In the flow. So the IF

statement is partitioned Into tWo basic blocks (2) and (3).

_-i



14

Example I basic block
I= 1 -- ( 1}
J=2 -- (1)

IF ( I .EQ. J ) GOTO 10-- { 1 }
K=3 -- (2)10 STOP - 3}

END

The flow graph of the above example is:

[ 1 }---+
I
I
V

(2)
I
3

{ 3 }<--+

Example II basic block

I= 1 -- (1)J =2 -- {(1})
IF ( I .EQ. J ) K = 3-- (2 & { 3)
STOP 4
END

The flow graph of the above example is:

(1)

V( 2 ---.
I I
I I
2 V

I (3)I I
v I

.44
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ii) arithmetic IF statement.

IF ( expression EXPR ) L1,L2,L3

The intermediate codes for an arithmetic IF statement are as

follows:

IOP 0

I codes for expression EXPR

AIF 0
LABEL index of Li in STMT array
LABEL index of L2 in STMT array
LABEL index of L3 in STMT arrayI As mentioned above, a key code AIF distinguishes an arith-

metic IF statement from a logical IF statement. Three jump

addresses are set according to the values of the three LABEL

codes.

3) A DO statement is the entrance to a basic block.

DO 10 I a expression EXPRi, EXPR2, EXPR3

The intermediate codes for a DO statement are as follows:

IDNT index of I in the symbol table
SEPR 0

codes for expression EXPR1

SEPR 0

1 codes for expression EXPR2

i SEPR 0
* I

I codes for expression EXPR3

DOST index of statement 10

A statement whose code starts with IDNT might be either a DO
0

statement or an ASSIGNMENT statement. To find out which it

is, check the last code for this statement: the DO

li___
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statement always ends with a key code DOST, while the

ASSIGNMENT statement always ends with a key code ASSIGN.

The DO loop is partitioned into basic blocks just like the

other statements. Nested DO loops are handled with a stack

which pushes down DOST with value, which is a DO loop label

(in the above case, 10 is a label), whenever DOST appears

and pops it up whenever a corresponding CONTINUE statement

appears (i.e., 10 CONTINUE appears in the above case).

4) A GOTO statement is an exit from a basic block.

i) simple GOTO statement.

GOTO Li

The intermediate code for a GOTO statement is as follows:

BR index of target statement

The only code generated for a simple GOTO statement is BR.

A jump address is set.

ii) computed GOTO statement.

GOTO (L1,L2,L3,...Ln) expression EXPR

The intermediate codes for a computed GOTO are as follows:

codes for expression EXPR

COOTO 0
LABEL index of Li
LABEL index of L2
LABEL index of L3

LABEL index of Ln

A statement whose last code is LAWL is either a GOTO

statement or an arithmetic IF statement. To determine this,

.. 1z -II I I
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check the code which precedes the first LABEL code: if it

is CGOTO, then the statement is a computed GOTO statement;

otherwise, it is an arithmetic IF statement (a code preced-

Ing the first LABEL must be AIF). There are as many jump

addresses set as LABEL codes. Only a computed GOTO

statement generates more than three jump addresses, whi.e an
*

arithmetic IF statement generates three, a logical IF

statement and a CONTINUE statement two.

5) A CONTINUE statement is an exit from a basic block.
B

10 CONTINUE

The intermediate code for a CONTINUE statement is as follows:

CONT 0

The only code generated for a CONTINUE statement is CONT. A

CONTINUE statement indicates the end of a DO loop,

corresponing to a DO statement (in the above case it

correspondes to DO 10 ..... statement). Whenever a CONTINUE

statement appears and a stack for a nested DO loop is not

empty, a statement label of a CONTINUE statement is compared

with a DO statement label contained in the stack. If labels

are identical, the stack pops up an entry.

6) A STOP statement is itself a basic block.

The intermediate code for a STOP statement is as follows:

STP 0

The only code generated for a STOP statement is STP. The

STOP statement is considered to be an independent basic

block because it is convenient to make an exit node of a

!..
-_ t
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flow graph and it is necessary to make an exit from a basic

block when the STOP statement is the then-part of an IF

statement.

7) A RETURN statement itself is a basic block.

The intermediate code for a RETURN statement is as follows:

RET 0

The only code generated for a RETURN statement is RET. The

RETURN statement is treated exactly as a STOP statement.

INTERVL ROUTIZ

This sub-section discusses the interval analysis

algorithm. Using a flow graph passed from the basic block

routine, this routine performs detection of an interval that

is a group of nodes whose immediate predecessors are from

the node of the same group except for a header node. It

also performs reduction of flow graphs. The graph generated

by a source program is referred to as the lowest order

graph. The last graph created by the interval routine,

which is no longer reducible, is referred to as the highest

order graph. A graph reduced from another graph is said to

be higher in order than the graph to be reduced. For exam-

ple, if G2 is reduced from GI, G2 is higher than G1; whereas

G1 is lower than G2. All flow graphs reduced by this

routine are passed to the data flow routine.

By a header node is meant an entrance to an interval.

By a predecessor is meant a node which comes into another

node in a flow graph, whereas by a successor is meant a node

0
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which goes out from another node (see Figure 2.1). An

interval is a new node for the next reduced graph.

( 1 --- predecessor of node { 2 1

V
{2}* I

V
3 --- successor of node { 2

* Figure 2.1 Predecessor and Successor of a node

The first process of determining an interval is to

select the root node (the entry point) of a flow graph as a

header node. Then each successor node of the header node is

examined whether it comprises an interval. A node to be

added to the interval should be one whose predecessors all
SI

come from inside the interval. A node that fails to com-

prise the interval is considered to be a candidate of a

header node of another interval. When all successors of

each node in the interval are examined but no more nodes can

be added to the interval, the next header node is selected

to recognize another interval. The process continues until

all nodes are in intervals. The detailed algorithm of

detection of intervals in a PASCAL-like language is shown in

Algorithm 2.1.

S1

S
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procedure interval-routine
var H : array of header ;

I : array of interval
begin

add the first node of the flow graph to H
for all h in H do

begin
add h to I[h] ;
for all i in I[h] do

for all j in { successors of i ) do
if ( all predecessors of j in I[h] ) then

add j to I[h]
for all i in I[h] do

for all j in { successors of i ) do
if not ( j in I[h] ) then add j to H

end
end ; -- end of interval-routine

Algorithm 2.1 Interval Routine

The algorithm for reducing graphs is rather simple.

An interval will represent a node of the next higher order

graph, i.e., the graph reduced from a graph which is proces-

sed for detecting intervals. After detection, edges between

nodes within an interval are deleted and edges from outside

the interval are changed to point to the header node of the

interval; edges to other nodes outside the interval are

changed to point to the header nodes of each interval.

DAIA FLO ROUTINE

This sub-section discusses the data flow routine, the

main and last routine of the data flow analysis system. All

graphs generated by the basic block routine and the interval

routine are collected for this routine to examine data

flows. The routine determines the variable that reaches

i(
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each node and the variable that is available at the end of

each node by tracing each variable on a flow graph. All

information generated by the routine is passed to the system

described in the next chapter, Chapter III.

The data flow analysis algorithm described below

consists of two phases.. A definition, frequently discussed

below, is a statement that assigns a value to a variable,

replacing a previous value; that is, a definition is an

assignment statement. All sets of definitions referred to

below are A, D, DB, DOUT, P, PB and R. These contain

definitions for each node in all flow graphs (see also the

declaration part of Algorithm 2.2). Phase I determines P,
£

the definitions preserved on some path through the interval

to the exit, and D, the definitions in the interval that may

be available, depending on the path. PB, a set of

definitions preserved in some node, and PD, a set of locally

available definitions, are computed by using values of P and

D. Any definition that reaches a node is said to be preser-

ved by the node. A locally available definition is the last

derinition of a variable within a node. For example,

I := 1 ; - -(1)

J := 2 ; (2)

K := 3 ; --- (3)

1 : 4q ; - (4)

Assuming that the above four assignment statements comprise

S
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a node, locally available definitions are (2), (3) and (4)

since variable I is re-assigned in statement (4) (statement

(1) is 'killed' by statement (4)). R[i] denotes a set of

definitions that can reach a node i from inside the inter-

val. Phase I is performed in the following order: from the

original graph to the highest order graph. On the other

hand, phase II is performed in the reverse order of phase I.

Ail, appearing in phase II, denotes a set of available

definitions on the edge i. Phase II determines A, the

definitions available at the exit from a node, and R, the

definitions that reach the node from other nodes, by using

the results of phase I, i.e., PB and PD.

The details of the algorithm are shown in Algorithm

2.2. Note that + and 0 denote UNION and INTERSECTION over

sets respectively.

I)
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procedure data-flow-analysis
var

A : set of available definitions ;
D : set of definitons in the interval

that may be availabe on the exit
DB : set of locally available definitions
DOUT : set of definitions reaches from outside
P : set of definitions preserved on some path

through the interval to the exit
PB : set of definitions preserved ;
R : set of definitions that reach nodes
G : set of flow graph

begin
ini~ialization;

phasel ;
if ( DOUT <> { I ) R[U] := DOUT
phaselI ;

end ; -- end of data-flow-analysis

procedure phasel ;
var

g : graph-number
h : header-node-number

£ x : exit-edge-number
1 : edge-from-inside ;
p : input-edge-number ;

begin
n := number of graphs generated by interval-routine
for g:= 1 to n - 1 do

* begin
if ( g > 1 ) then

for all i in ( edges in Gig] I do
begin

x := corresponding exit edge
in G[g-1J to i

S h := header node of I[h] with x ;
PB[i = P[x] ;
DB[i] :l (R[h] J P[x]) + D[x;

end ;
for all h in { header nodes in Gig] } do

begin
S for all I in ( exit edges of h ] do

begin
P[i] := PBi];
D[i] : DB[i]

end ;
R[h] := empty-set ;

, Qfor all 1 in ( edges which enter h
from inside I[h] 1 do

R h] :] R[h] + D[1]
end;
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for all j in { non-header nodes in G[g] } do
begin

PP := empty-set
DP := empty-set ;
for all p in { input edges of node j ) do

begin
PP := PP + PEp] ;
DP := DP + D[p] ;

end ;
for all i in { exit edges of node j } do

begin
pri] : pp PB[i]
D[i] := (DP PB+I]) + DB[i;

end
end

end ;
end ; -- end of phaseT

procedure phaselT ;
var

g : graph-number
h : header-node-number
p : input-edge-number ;

begin
n := number of graphs generated by interval-routine ;
for g:= n - 1 downto 1 do

begin
for all i in { nodes in G[g+1 ) do

begin
h := header node in G[g]

which i represents in G[g+1]
R[h] := R[h] + R[i]

end ;
for all h in ( header nodes in G[g] ) do

begin
for all i in ( exit edges of h ) eo

A(i) := (R[hJ M PB[I) + DB[2'
for all j in { non-header nodes in I[h] } do

begin
R[j] := empty-set
for all p in { input edges to j ) do

RUJ] := REJ] + A[p] ;
for all I in { exit edges to j I do

Ai] :: (R[jJ * PB[i) + DB[i;
end

end
end

end ; -- end of phaselI

Algorithm 2.2 Data Flow Analysis

T . .... .
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SECTION 2.2 Implementation

This section discusses implementation techniques of

the data flow analysis system shown in Figure 1.1. The
0

system, was divided into two phases, the data flow analysis

system and the applications system. The data flow analysis

system consists df three routines: the basic block routine,

the interval routine and the data flow routines, as shown in

Figure 1.1. The algorithms discussed in the last section

have been implemented. The applications system will be
S

discussed in the next chapter.

The initial discussion in this section concerns

interrelationships among routines, that is, which routines a6
routine calls and from which routines a routine can be cal-

led. The former is defined as a child routine and the lat-

ter is dezined as a parent routine. In the following

discussion, the relation between a parent and a child

routine is referred to as a hierarchy. A figure of the

hierarchy depicts a parent-child relationship. An arrow -- >

in the figure goes from a parent to a child routine. The

second discussion deals with the data structure of the data

flow analysis system.

Figure 2.2 depicts the hierarchy of the data flow

analysis system. The basic block routine, the interval

routine and the data flow routine are BSCBLK, INTRVL and

DTAFLV respectively. The DRIVER routine called by FNS.2

controls these three routines and WRITVL of the data flow
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analysis system. First, DRIVER calls BSCBLK which

partitions a source program into basic blocks and produces a

flow graph; it then calls INTRVL repeatedly until a graph

cannot be reduced. DRIVER can recognize when a graph can no

longer be reduced, by comparing the number of nodes in the

previous graph with that of the graph last generated.

Finally, DTAFLW is called to produce a set AVLSET of

available definitons for each node and a set RCHSET of

definitions that reach each node. For tracing and debugging

purposes, WxITVL prints a header node and other non-header

nodes for each interval. BSCBLK, INTRVL and DTAFLW calls

routines. Each routine is described further below.

----------.

I DRIVER I
----------.

+----------------------------------------------
I I I I
I, l I I
v v v v

---------- 4.---------- 4.---------- 4.----------

I BSCBLK I INTRVL I I WRITVL I I DTAFLW I
---------- .----------. .---------- .----------.

Figure 2.2 Hierarchy of the Data Flow Analysis System

In order to create a flow graph, BSCBLK requires the

mechanism for generating edges. For this purpose, BSCBLK
0

calls the SETOUT routine when an arithmetic IF statement or

a computed GOTO statement appears. Intermediate codes for

0

"T-? " -" ... .. . _ __._ _,-,_._ ,__,,. ... " " " " /

+ I I I nm Ill n -
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both statements include LABEL code. SETOUT sets the

statement number to be executed next; it will be changed to

a basic block number after the creation of the original flow

graph. Such a basic block number represents a destination

node of an edge. WRINTR prints internal forms (LIMS array,

Symbol Table, Statement array and CODE array [BH]) generated

by FMS.2.

It would be helpful to discuss FMS.2 for understand-

ing interfaces between FMS.2 and a newly implemented system.
S

The FORTRAN Mutation System (FMS.2) is an interactive system

for testing the completeness of a set of test data on a

FORTRAN source program. The user is requested to give the

name of the program being tested, mutant operators which are

to be applied, and test cases which are used. During

program parsing, information is saved in the arrays includ-

ing those discussed above and mutants are created according

to operators specified by the user. Then the system

executes each mutant on test data, eliminating dead mutants.

The results of mutant runs are reported back to the user.

He can request various reports and summries. He can

continue the experience if necessary.

S
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4---------- .

I BSCBLK l
----------

l ll l
V V

---------- ---------- 4

1 SETOUT I I WRINTR I
4.----------- 4.----------

Figure 2.3 Hierarchy of the BSCBLK Routine

A flow graph generated by the BSCBLK routine should

be reduced for examining data flows. To do this, DRIVER,

the control routine of the data flow analysis system, calls

INTRVL after BSCBLK. INTRVL partitions a flow graph into

intervals which are nodes in the next higher order flow

graph. This algorithm was described in Algorithm 2.1 in the

last section. Whenever this routine is called by DRIVER, it

creates the next higher order graph to the extent that a

graph can be reduced. An edge of a flow graph is deleted

simply by deleting a node number which represents the

destination of the edge. FNDNOD is called to examine

whether a node belongs to some Interval. This routine is

useful to check whether all immediate predecessors are o
already in the interval. After finding one interval, INTRVL

selects the next unprocessed header node, calling SHLHDR

which selects the smallest number mong unprocessed header 0

nodes.

0
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-------

I INTRVL I

S. .. . . . . + a
* I I

' I
v v

4---------.

I FNDNOD I I SMLHDR I
4.-----------4- 4.-----------4-

Figure 2.4 Hierarchy of the INTRVL Routine

0 After the execution of the BSCBLK routine and the

INIRVL routine, all information requested by the DTAFLW

routine is generated. Then DRIVER calls DTAFLW (for the

I details see Algorithm 2.2 in the last section). DTAFLW

consists of INTDF, PHASEl, INTRCH and PHASE2 as shown in

Figure 2.5. INTDF initializes DB and PB sets discussed in

0 the previous section. Performance of PHASE1 and PHASE2 is

described in Algorithm 2.2 above. DTAFLW calls INTDF,

PHASEl, INTRCH and PHASE2 in order; each of which is called

0 once. INTRCH, called between PHASE1 and PHASE2, initializes

the R set for the root of the highest order graph, if a

definition reaches the program from outside such as a

0 parameter of a subroutine in FORTRAN. Variables set by DATA

statements are treated as parameters. Since all four

routines called by DTAFLW call some other routines, details

* of each routine will be described below.

___'.1

I J II . . . .C
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-----------

I DTAFLW I

--- --- --- --- --- -- ---------------

I I I i
i I I i

V V V V

---------- + .---------- ---------- -----------

i INTDF I PHASEI I I INTRCH I I PHASE2 I
S4. 4.---------- .4----------- 4.----------

Figure 2.5 Hierarchy of the DTAFLW Routine

INTDF stands for INiTialization for the Data Flow

analysis routine. The first subroutine called from INTDF,

FNDPRK finds external definitions and are set by DATA

statements. The former are parameters of subroutines passed

from outside the program. If parameters are found, BBNUM

and ENTPNT fields in DEFTBL are set; other fields, however,

are set simply to zero (i.e., variables are undefined). On

the other hand, if the latter is found, BBNUM, ENTPNT and

TYPKND in DEFTBL and its value are set. Variables set by

DATA statement are constant since they are read-only

variables in FMS.2. In order to distinguish the former from

the latter, BBNUM field is set to -1 for the former and 0

for the latter.

ti A
__ _ _ _ _ __ _ _
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S 4.----------I INTDF I

- -----------

* 
l l I lI i I IV 

V 
V 

V

---------- 4.---------- 4.---------- 4----------
I FNDPRM I I DEFPB I I DEFDB I I WRITDT I
. - - - - - - - - - .. . - - - - - - - - - .. . . .- - - - 4 -- - - - - - - -- .

* 
II

£ 4-------------4+V

---------- I I
1 FS.2 I v v

Iruiel'---------- 4 ----------

I ADDRES I I FNDASN i I SETDB 1
DP 1 ---------- . +m .--------.

I REL I
I SCTYPE I 

+. . . . . ..-------- 4 -- - - -- - -

£ V v
.-------- . . -- ------
1 FNDCON I I FNDID I4 . - - - - - - - - . 4.- - - -. . . . . . .4 .

* v

I FMS.2 I
Iroutinesl
I DP I
I REL I
4----------.

Figure 2.6 Hierarchy of the INTDF Routine

0
DB and PB are defined from the original flow graph by

calling DEFDB and DEFPB respectively. Further, DEFDB calls

FNDASN to find an assignment statement and, If found, calls

SETDB to determine a DD set. To find an assignment

statement that assigns a constant value to a variable,11 tI'
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FNDCON is called. If a constant value is found on the

right-hand side, that is, the expression on the right-hand

side is a simple constant, the value of the constant and its

type (integer, reai or logical) are set in the table of

definitions (DEFTBL). FNDID performs recognition of locally

available definitions. Definitions appearing more than once

within a node are detected and killed by the FNDID routine

except for the last appearance. Also, DEFTBL is updated if

a definition is killed. Using the results from DEFDB, PB

set is determined; for each node PB is all definitions in

DEFTBL minus DB for each node. WRITDT prints contents of

DEFTBL, identifier, value and its value if any.

PHASE1 determines PB, DB and R sets for each node in

the original graph to the highest order graph. PB and DB

are computed by using values of P and D in the previous

graph. If a node is a header, P and D are equal to PB and

DB respectively; however, in the case where a node is not a

header, the unions over P and D for all input edges to the

node are used to compute P and D for each exit edge. DEFPRE

deriines this union over P, called DFPSET, and DEFDEF defines

the union over D, called DFDSET. For each header node, R is

defined by the union over D for edges that reach the header

node from inside the interval. DEFRCH defines the above

union. During processing in PHASE1 three set operati.ons are

utilized: union, intersection and assignment which are

referred to as UNION, INTRSC and TRNSFR respectively in

S



33

PHASE1.

----.-.

1 PHASEl I
4----------

4. - -4
I I I I

V V V V
+ ------- + 4------------. 4----------. +-------------+

I DEFPRE I 1 DEFDEF I I DEFRCH I set
-+ +----------+ +---------- . operators I

I I I I TRNSFR
1 1 UNION I

v v v INTRSC
. ---. 4----------. .----------. 4------------ .

I UNION I I UNION I I UNION I
4----------+ 4---------- .+ TRNSFR I

4.----------

Figure 2.7 Hierarchy of the PHASE1 Routine

PHASE2 is the final step in the DTAFLW routine,

determining the A set for each exit and the R set for each

node in the graph from the highest order to the original

i graph. The final output of data flow analysis , A and R in

the original flow graph, is produced by PHASE2. For a non-

header node, R is defined as the union over the A set for

* all input edges to the node which is computed by calling the

DEFAVL routine. The three set operations are utilized in

PHASE2 as well as PHASE1.

0/

S "
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I PHASE2

-----....------

4-+

I I
I I

V v
+- -..... 4 -4

I DEFAVL 1 1 set
---------- operators

TRNSFR
' UNION

v I INTRSC
+---------- +-------------
, UNION
I TRNSFR
4----------

Figure 2.8 Hierarchy of the PHASE2 Routine

DAU TRCTR

This sub-section discusses the data structure of the

data flow analysis system. All arrays and variables in the

following discussion, declared as COMMON arrays and

variables in FORTRAN, are used by the routines described

above. Data structure will be described in PASCAL-like

language for understandability and readability.

)

w ________
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1) BLKTBL

BLKTBL is array[1..BTSIZE] of

record

LAST:1..MAXST: -- last stint of a basic block

PTROG:I..OGSIZE: -- pointcr to OUTGO

PTRIC:1..ICSIZE: -- pointer to INCOM

PTRRCH:1..SETSIZ; -- pointer to RCHSET

lDRNO:1..BTSIZE; -- header node of interval

PRVHDR:1..BTSIZE; -- corresponing header node

-- in previous graph

end;

BKLTBL contains basic blocks consisting of the above

seven fields. LAST field contains the last statement of a

basic block. PTROG points to OUTGO array which contains a

successor node and its information. Similarly, PTRIC points

to INCOM array for predecessor nodes. PTRRCH points to

RCHSET, a set of definitions that can reach a node (R set in

the abova algorithm). HDRNO contains a header node of the

interval to which a node belongs. On the other hand, PRVHDR

contains a corresponding header node in the previous graph

4(lower order graph), unless the node is in the original

graph. This field is useful to determine the PB and DB sets

in PHASE1 of the data flow analysis routine.

I '
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2) GRAPH

GRAPH is array[l..GRSIZEJ of 1..BTSIZE;

A subscript of GRAPH represents a graph order and an

element of GRAPH points to an element of BLKTBL which

represents the last node of a flow graph. IGRAPH points to

the highest order graph.

3) OUTGO

OUTGO is array[1..OGSIZEJ of

record

BBNUM:1..BTSIZE; -- basic block(= node) number

NEXT:1..OGSIZE; -- pointer to next element in OUTGO

EDGENO:1..OGSIZE; -- edge number

PTRDB:O..SETSIZ; -- pointer to DBSET

PTRk'B:O..SETSIZ; -- pointer to PBSET

PTRDEF:O..SETSIZ; -- pointer -to DEFSET

PTRi'RE:O..SETSIZ; -- pointer to PRESET

PTRAVL:O..SETSIZ; -- pointer to AVLSET

end;

OUTGO, pointed from PTROG field in BLKTBL, represents

exit edges to successor nodes with linked-list structure by

using NEXT field as a pointer to the next element, if more

than one successor node, the content of BBNUM, exist. An

exit edge number in EDGENO field is unique in all graphs.

PTRDB, PTRPB, PTRDEF, PTRPRE and PTRAVL point to DBSET,

PBSETO DEFSETr PRESET and AVLSET respectively.
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) INCOM

INCOM is array[1..ICSIZ] of

record

BBNUM:1..BTSIZE; -- basic block(= node) number

NEXT:1..ICSIZE; -- pointer to next element in INCOM

end;

INCOM, pointed from PTRIC field in BLKTBL, represents

input edges from a node, the content of BBNUM field in

INCOM. The structure of INCOM is also linked-list with NEXT

field as a pointer to the next element.

5) NEWNOD

NEWNOD is array[l..BTSIZE] of O..BTSIZE;

A subscript of NEWNOD is identical to a node number;

whereas an element of NEWNOD represents a corresponding node

in the next higher order graph to the node. Reduction of a

flow graph requires deletion of exit edges. That is

recognized by comparing the element of NEWNOD for a node

with that for a successor node. If both are identical, the

exit edge is deleted from a flow graph.

6) HEADER

HEADER is array[1..HDRSIZ] of

record

NODENO:1..BTSIZE; -- header node number

PTRINT:1..INTSIZ; -- pointer to INTER

end;

S

-. , 1 11 1 l I I I I I
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During interval analysis, HEADER is used to keep

header nodes. The first field of HEADER, NODENO, contains a

header node which is either processed or unprocessed by the

INTRVL routine; pointer IHDR indicates the currently proces-

sing header node and pointer HDRTOP indicates the last

header node recognized by the INTRVL routine. Processed

header nodes have some nodes which belong to the same inter-

val as a header node. Of these nodes, which are kept in

INTER discussed below, the last recognized one is pointed by

the second field of HEAuER, PTRINT.

7) INTER

INTER is array[1..INTSIZ] of 1..BTSIZE;

INTER contains interval nodes, linked with HEADER.

Elements of INTER, in sequence between the element pointed

by the previous HEADER.PTRINT and by the current HEADER.P-

TRINT, belong to the same interval.

S

eo I
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8) Sets for data flow analysis

DBSET is array[1..SETSIZ] of O..DTSIZE; -- DB set

PBSET is array[1..SETSIZ] of O..DTSIZE; -- PB set

DESTi raI.STIZ fO.TIE e

PRESET is array(1..SETSIZ] of O..DTSIZE; P- set

RESET Is array(1..SETSIZJ of O..DTSIZE; R- set

ACBSET is array[l..SETSIZJ of O..DTSIZE; A- set

DFPSET is array[1..SETSIZ] of O..DTSIZE; -- union over P(p)

-p: all input edges

DFDSET is array[1..SETSIZ] of O..DTSIZE; -- union over D(p)

-- p: all input edges

The structure of all sets is identical; the element

pointed by a pointer in BLKTBL or in OUTGO contains the num-

ber of elements of a set for each node or exit edge. The

elements following this element are elements of a set,

representing definition identifiers discussed below. The

following example illustrates the structure of PBSET.

OUTGO

PTRPB
I-I----------------

I IPBSET v
------------------------------

I 1 3 1 41 1 1 1 1 1-- ---- -- -- -- -- -
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The element pointed by PTRPB, 3 represents the number of

elements of PBSET for some exit edge. Three elements of

this edge are the numbers following 3: 1,4,7. PTRDB,

PTRPB, PTRDEF, PTRPRE and PTRAVL in OUTGO point to DBSET,

PBSET, DEFSET, PRESET and AVLSET respectively and PTRRCH in

BLKTBL points to RCHSET. These sets are saved for further

use. On the other hand, DFDSET and DFPSET, which represent

the union over D and P respectively for all input edges, are

computed each time D and P are determined for each exit edge

of a non-header node. The first element of these two sets

contains the number of elements of sets.

9) DEFTBL

DEFTBL is array[1..DTSIZE] of -- definition table

record

BBNUM:1..BTSIZE; - basic block numner

ENTPNT:1..MAXSYM; -- entry point

ARYON:-I..MAXSUB; -- array indicator

TYPKND:O..4; -- type kind

FSTNUM:1..MAXST; -- first appearance of id

LSTNUM:1..MAXST; -- last appearance of id

end;

DEFTBL contains information about definitions,

consisting of six fields: BBNUM, ENTPNT, ARYON, TYPKND,

FST'KJM and LSTNUM. A definition appears in the basic block

number BBNUM. ENTPNT represents an entry point to Symbol 0

Table for a variable, the left hand side of an assignment

0)

-. -.. '|
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statement. If the variable is a simple variable, 0 is set

in ARYON; if an array element and its subscript is kown at

compile time, a subscript is set; otherwise, -1 is set.

TYPKND indicates the type of a constant, if the right hand

side of an assignment is a simple constant, that is, without

any arithmetic operators. type INTEGER, REAL, LOGICAL and

DOUBLE PRECISION are 1, 2, 3 and 4 respectively; in the

other cases, the value of TYPKND is 0. FSTNUM field

contains a statement number where a variable appears for the
S

first time within the basic block BBNUM; while LSTNUM

contains a statement number where a variable appears last

within basic block BBNUM. These fields are useful to
S

determine lower and upper limits for an equivalence command

(see Chapter III). Note that a definition identifier is

identical to a subscript of DEFTBL array.

10) INTVAL, REALVL LGCVAL and DBLVAL

INTVAL is array[1..DTSIZE] of INTEGER; -- INTEGER constant

REALVL is array[1..DTSIZE] of REAL; -- REAL constant

LGCVAL is array[1..DTSIZE] of LOGICAL; -- LOGICAL constant

DBLVAL is array[1..DTSIZE] of DOUBLE PRECISION;

-- DOUBLE PRECISION constant

These arrays contain a value of the right-hand side

of an assignment if it is a simple constant. A subscript of

these arrays corresponds to a definition identifier.

.- , I-V•. - r _
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CHAPTER III

APPLICATIONS OF DATA FLOW ANALYSIS

This chapter describes applications of data flow

analysis and its implementation for the FORTRAN Mutation

System.

Based on the information developed in data flow

analysis there are some useful applications to detect an

equivalent mutant. Such applications are dead code detec-

tion, recognition of loop invariants, constant propagation

and invariant propagation. If any node, for instance,is not

connected to the rest of the flow graph, all mutants

generated from this node do not affect the output from the

original program. These mutants can be considered to be

equivalent mutants as well as logically equivalent ones.

For more detailed discussions of applications to testing

mutant equivalence, see [ABDLS] and [DLS].

Some techniques of equivalence detection described in

[DLS] have already been implemented on the FNS.2 system as

an equivalence testing post-processor called Equivalence

command. Since a large number of mutants can be eliminated

on the first testing run, this processor is run after the

mutants have been executed on the data.

On the current FMS.2 system, there are a variety of

commands available to displaying status information after

the mutant execution. For example, the CE command displays 0

a program listing with equivalent mutants. The equivalent

0C
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*
command (E), however, is rather special because it detects

equivalent mutants instead of displaying the results of

testing. The command format is as follows:
*

E STA stint_no - stMtt_no

> variable_list absolute_value

or
S

> variable-list EQ constant

where stmt_no - stMt_no specifies which statements

are under consideration and variable_list is a list of

variables separated by commas. The possible values of

absolutevalue are:

POSNONZ POS NEGNONZ NEG NONZ

~i These parameters mean greater than zero, greater than or

equaJ to zero, less than zero, less than or equal to zero

and not equal to zero respectively. The detailed explana-

tion of the E command format will be found in [BHS]. The

remainder of this chapter will discuss the algorithm of set-

ting arguments of the E command, that is, two strut_no's,

variablelist and absolute_value shown in the above format,

its implementation and an example of equivalent mutants

detected in a given program.

The applications system is described in the following

section. For a node without any definitions, all incoming

definitions are available for an equivalence detecting com-

mand. However, a node with definitions is treated

differently; all reaching definitions which define the same

S.
* - ____- - - -
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variable as is defined in the node are available from the

entrance to the node to the first appearance of the

definition. Assuming that the same variable is defined

twice in the node, the first definiiton is killed by the

second one. Thus, between the first and the second

definition, the first one is available. Before the first

definition, all reaching definitions sharing a common

variable are available and between the second definition and

the exit of the node, the second definition is available.

All other definitions, which do not define the same variable

as defined in the node, are available from the entrance to

the exit of the node. The details of algorithm is shown in

Algorithm 3.1.

70
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procedure EITPRT ;
var

i : l..BTSIZE; -- node
j : l..OGSIZE; -- exit edge from node i
sl : 1..MAXST; -- lower limit of stmt for E command
s2 : 1..MAXST; -- upper limit of stmt for E command
DB is array[1..SETSIZ] of O..MAXST;

-- DB set for each edge
R is array[l..SETSIZ] of O..MAXST;

-- R set for each node
SAME is array[1..SETSIZ] of O..MAXST;

* -- set for same id
begin
if ( DB[J] = I I ) then

begin -- no assignment statement in node i
sl := first stmt of node i ;
s2 := last stmt of node i ;

* ECMND(R[i],sl,s2)
end

else -- assignment stMt in node i
for all Xi in DB[j] do -- X is any variable

begin
SAME := {Xk I Xk in R[i]) ;

* if ( SAME <> { ) then
begin -- X reaches node i from other nodes

sl :- first stmt of node i ;
s2 : (stmt with first X in node i) - 1
ECMND(SAMEsls2)

end ;
* si := (stmt of Xi) + 1 ;

s2 :: last stat of node i ;
ECMND(Xisls2) ;
if ( (R[i]-SAME) <> { ) then

begin
s := first stmt of node i ;

a s2 :: last stmt of node i
ECMND(REiJ-SAMEsls2)

end
end;

end

Algorithm 3.1 The Applications Systems

Note: procedure ECMND executes an equivalence detecting

command. The first parameter is a set of definitions and

the second and third one are the lower and upper limit of a

statement respectively.
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Consider the following example:

I I

v I
4. -----+ V{a~i I:: 1 +.--------+
I J:= I {b}l I:= I
4.--------- ---------

I I#a 1#b
I I
4-----------------+

V
+-----------------+

{C} I -----(W) I

-(x)ISI I

I
I I:= --- (y) I

I I I
I I --- (z) I

I~c

V

Definitions reaching to node {c) are Ia and Ja from node {a)

and Ib from node {b) (Note: Xi denotes a definition of a

variable X defined in node i). Thus,

Ric] = {Ia,Ja,Ib)

Definitions defined in node {c) are two Ic's but the first

definition Is killed by the second one. Thus,

DB[c] = {Ic)

In the above algorithm, SAME denotes a set of definitions

which reach a node and are defined In the node, that is, a

detinition which shares the common variable and reaches the
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S
node and/or defined in the node. Since I is defined in node

{c},

SAME = {Ia,Ib) for node {c} and Ic
*

Definitions in SAME, Ia and Ib, are available between (w)

and x), the first apprearance of I, instead of (y). On the

other hand, Ja is available from (w) through (z) because J
S

is not defined in node 1c). Ic is available between (y)+1

and (z).

The hierarchy of the applications system is shown in

Figure 3.1. The INTRFC routine, called by the DISPLY

routine in FMS.2, interfaces between the FMS.2 system and

the data flow analysis applications system. Each applica-

tion is called from INTRFC (only EITPRT is the currently

available application and further applications will be

extended and called from INTRFC). The algorithm discussed

above has been implemented as the EITPRT routine. The

TRNSFR routine is called, when RCHSET is assigned to another

set. SETRLN sets arguments for the equivalence detecting

command as if they were set from the terminal. IRESULT set

passed from EITPRT to SETRLN contains definitions applied

for equivalenne detecting command. One of the arguments of
0

this command is a value of a variable, if it is known;

otherwise, POS, NEG, NONZ or combinations of these (POS and

NONZ, NEG and NOZ) are set. POS, NEG and NONZ stand for

POSitive, NEGative and NON-Zero values respectively (see

[BHS) for an equivalence command). As an internal value for

'31



48

the argument in this applications system, the following

values are assigned:

1: value is greater than zero

2: value is less than zero

3: value is greater than or equal to zero

4: value is less than or equal to zero

5: value is non-zero

6: value is zero

7: value is LOGICAL .TRUE.

8: value is LOGICAL .FALSE.

9: value is known (INTEGER or REAL)

0: value is unknown.

If more than one definition with a common variable reach a

node, the above value is computed by using Parameter Kind

Decisiun Table(PKTBL) shown in Table 3.1. The first column

and first row in PKTBL are parameter kinds for two different

detinitions which define a common variable.

A
VJ

______'

5€
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I1112131415167?181

1111513 10151310101

13131013 01016 10101

21051 1I0 14 016 1010

1 51510 1 015101010

I6131#I66lOI6IObOI

I7I0:0101010101?101
t I81010101010101018I

4---------------------------------------------.

Table 3.1 Parameter Kind Decision Table

I

The FINDPK routine is called by EITPRT to determine a

parameter kind for a definition. This INTEGER FUNCTION

t routine receives a definition and returns a parameter kind

of the definition. The DFECKD routine actually executes an

equivalence detecting command using information set by

t SETRLN. This routine is similar to the routine in FIS.2

which executes the same command, but arguments for DFECMD

are set automatically instead of by manual operation. The

• WRTINF routine traces the execution of an equivalence coN-

mand, displaying its arguments on the terminal. The SAMEID 4

routine is called by EITPRT to examine whether there are any

* definitions sharing a common variable between a set of

definitions which reach a node and a set of definitions

1 ~ 77 1010101 0i 1"

------------ -- - - - - - -

8 10101_ 101
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defined in the node.

4.----------.
1 INTRFC I

V

4.----------

I EITPRT I
4---------- .

4-------------------------------------------
SI I

4.---------4. 4.----------.. m+ 4----------.
I TRNSFR I I SETRLN I I SAMEID I I SETRLN 1
4---------4.. 4-----.. 4---------. 4---------- .

I I
4---------------

1 I v
V V 4---------- .

------.-- ---------- I FINDPK I
I FMS.2 I I WRTINF I ----------.
routines .----------.

I SUBCLA [
1 EMUCMP I
IPTMIB v
I PRCLST -------.
----------. I FMS.2 I

I routinea I
I PINAM I
I PhNUM I
I PRCHAR I
I TYPEBF I

4-------..4.

Figure 3.1 Hierarchy of the Applications System

INFEQU, which contains the information for an

equivalence detecting command, has the following data struc-

ture:

-- -

._ 4 _r
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INFEQU is array[1..INFSIZ] of

record

DTINDX:1..DTSIZE; -- definition identifier

9 PARKND:O..9; -- parameter kind

end;

DTINDX field contains a definition identifier of DEFTBL and

PARKND contains a parameter kind. These two fields are

determined by the SETRLN routine and used with the lower and

upper limit of a statement by the DFECMD routine. After
S

executing an equivalence detecting command, this information

is discarded.

To make clear the above discussion, consider the fol-

lowing FORTRAN program:

SUBROUTINE ASSIGN
INTEGER IpJK

* INPUT OUTPUT I,J
OUTPUT K
DATA K/3/

10 1 2 -- (1)
J 1 -- (2)

20 IF (J .LT. 0) I 3 -- (3) & (4)
4 40 J = I + K -- (5)

1 1 -- (6)
1 2 -- (7)
J I+2 -- (8)
RETURN -- (9)
END -- (10)

The mutation system creates 157 mutants for the above

program. After the first testing run, 51 mutants were kiL-

led and 106 mutants remained as a live mutant. Then the

EITPRT routine produced the following E commands and issued

them:
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>E STA 2 - 2
>I EQ 2

>E STA 1 - 2
>K EQ 3

>E STA 3 - 3
>K EQ 3
>I EQ 2
>J EQ 1

>E STA 4 - 4
>K EQ 3
>J EQ 1

>E STA 5 - 5
>I POSNONZ

>E STA 8 - 8
>I EQ 2

>E STA 8 - 8

>K EQ 3.

EITPRT creates commands for each basic block as shown above.

The arguments of these commands are equivalent to the fol-

lowing:

1) K=3 between statement (1) and statement (8)

2) I:2 between statement (2) and statement (3)

3) J=1 between statement (3) and statement (4)

4) I>0 in statement (5)

5) I=2 in statement (8).

Since the data flow analysis routine can not evaluate a

boolean expression, the valuable I holds integer value 2 or

3 after the IF statement. Thus, the case 4) appears as

shown above. Those five cases can be easily analyzed from

the above FORTRAN program. 0

JC
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After the execution of E commands created by EITPRT,

16 equivalent mutants were detected. Some of them are:

IF (J .LE. 0) 1 = 3 for statement (3)

J = I + 3 for statement (5)

J = ABS I + 2 for statement (8).

The complete sample run of this program can be found in
AAppendix B.

$

£

tt

S" 4 . - •'"r
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CHAPTER IV

CON CLUSIONS

Data flow analysis recognizes available variables in

each basic block and their values if known at compile time.

Thus, the more information collected at compile time, the

more precise the analysis is. Variables, whose initial

values are not assigned at compile time or at the entry

point to the program, are undefined until their values are

assigned. In experiences with a newly implemented system,

the system equivalence command detects an equivalence mutant

automatically, based on information produced by data flow

analysis.

In the current FORTRAN mutation system, twenty two

mutant operators are used. Of these, Scalar for Constant

Replacement, Constant for Scalar Replacement, Relational

Operator Replacement and Absolute Value Insertion can be

affected by the new system. To create a mutant, if a

variable is replaced with the value recognized by data flow

analysis, this mutant is equivalent. Similarly, if a

constant is replaced with a variable whose value is

recognized by data flow analysis and equal to the constant,

this mutant is also equivalent. If a value of a variable Is

recognized as greater than or equal to zero, the absolute

value of the variable Is equal to the original value. Also,

this mutant is detected as an equivalent mutant. Suppose 0

that a variable holds less than zero as its value, a
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relational operator LT is then logically equivalent to LE

from a program-flow point of view.

Those mutants created by the above four mutant

operators can be detected automatically by the data flow

analysis with an equivalence command.

S

II

Si

S#

S
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APPENDIX

A. EXAMPLE OF DATA FLOW ANALYSIS

G[J G[2] G131

IY:= IY:= IY:=
V V V

11 I VI V+< --------- + #7 11#10 11#1 1

1#1 1 v v v

v I +---{5---. exit1 exit2
+---2---+ 1#5 1 I

' I I 1#8 1#9 (6) : (1,2,3,"4
1#2 1#3 1 v v
v v I exit1 exit2
(3)Y:= (4)---+

' IX:= (51 (2,3,i}
1#4 1#6
V V

exit1 exit2

initialization:
4.--------------------------------------------

edge # I PB I DB
------------------------------------
I 1 1 {YO,Y3) I (Xl)

2 1 {X1,X4,Y o,3) I empty
I 3 1 {XlXli,YO Y3} I empty 1
1 4 (X1,X4J I {Y3) 1

(YoY3O I (Wxli
I 6 1 (YOY3) I (X4l) 1
+---------------------- -------------------- 4.0

edge #1
P1] a PB[1] a (YOY3)
D[1] a DB[1] a (Xl)

edge #2
PE I x PB[2] s {Xl,XlYOP3)
D[2] DB[2] a

0
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edge #Y3
P[3J =PB[3J c Xl ,X4,yOtY3)
D[3J = DB(3] =

* dge #41
E43 = PP 0PEEJI]

=P[2J 0 PBE1]
= Xl ,X41YO ,Y3)* Xqj
={X1,XI)

D141 c (DP 0 PB[4D] +. DB[1I]
= (DE1 PEJ]) DBE'I]

(( ) {X (X4I)) + MY)
={Y3)

edge #5
*P15] c PP 0 PBEt]

=P[3] 0 PB[5]
=X ,IXIIYOMY3 0 {YOPY31

= {yOtY3)
D[5] (DP * PES) + DB[5J

(D[3] PB[5]) + DBES]
= Uf ) {YO,Y3)) + {X4i)
= {X4i)

edge #6 B6
P(6] PP* B6

*= P[31 0 PBE6]
c{XllXIIYO,Y3) 0 {YO,Y3)
"{YOY3)

DE61] = (DP 0 PBE6]) + DBE6]
"(D13] PB[63) + DB[6J

(( ) ( YO,Y3)) +(XMi

* 1) Define PB and DB
ede a 7
P517 a P11] a IYO,! 3)
DOM? x (RIl] 0 PEI]) + DIl]

au(() 0 (10,13)) *(XI)
2 (X0)

- J---I 
---
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edge #8
PB[8] = P[4I] {X1,X41
DB[8J = (11(2] 0 P[43]) + D[4]

=({XA4) * {XI,XI)) + M)
={XAI,Y3)

edge #9
PB193 P16] {YO,Y3)
DB[9J = (R[2J P[6J) + D[61

=({X4I) *{YOY3)) + [X41)
= {X4i)

ii) Define P and D
edge #7
P[7T] PB[7TJ {YO Y3)
D171 = DB17J =xi Lil

edge #8
P[81 PP * PB(8]

*PE7] 0 PB(8]
* 1O,73) * IX1,XII)

D[8J (DP 0 PB[8]) + DBE8J
=(D[7] * PB[8J) + DBE8J
=({Xl) 0 {X1,XAI)) + {XAIY3)
a Xl, XAI,3)

edge #9
PE9J PP * PB19J

a PE7] * PB19J
= Y0,Y3) * {YOY3)
={YOPY3)

D[9] aCDP * PB[9]) + DB[9]
=(D[7] * PB(91) + DB[9]
a((Xl) 0 {YOPY3)) + IM)
%(X4I)

GE 3]:
1) Define PB and DB
Odea #10

DBIlO] a (R[6] P[8J) + D[8]
Aa +( ) )*{X1,XIIY3)

x XllX4tY3)

PIP 7 -
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a1II a P(9] (YOY3)
DS[ I1 I z (1161 0 PE9]) *DE9]

3 (() *(YO,Y3)) + (Xe)

GC3

* ~ ~ ~~i in±inztin R E =(O

43 1~~~i) Define (OA (]=(O)+{I=(O

edge *i10
AE1OJ = (R[6] 0 PB[1OJ) + DB[IOI

= M )* ( 1) + {Xl,X4,Y3)
z (X1,XJItY3)

IS ~ ~~edge #11TOT))*(X4
A[Ill (RE6] PB11]1) + DBE11]

GE 2]:

node (1)
R(1] a 1(1] + 1(6] + (YO) a(YO)

ii) Define A
edge #7
AM? a (1(11 0 PBC7]) DB171

a ((O) 9 (YOY3)) + (Xl)
* a (XlTO)
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edge #8
RE5J A17) (Xl YO)
A[81) (R15J 0 PB18J) + DB[8J

= (xi~o)* 1XlIX4)) + (X4Y3)
= {Xl,X4,Y3)

edge #9
A(9J (R[5] 0 PBL9]) + DB19J

" ((X1,YO) * (YO,Y1)+ {X4)I

G~l1]:
i) Deiine R
node (1)
R~lJ RU)l + RU]) = + {Y01 ( Y01

node (2)
R[2] = R(2] + R(5] (XJ4) + {Xl,X'0I = Xl,XL,YOI

ii) Define A
edge #1
A~l] (REl] * Pe[l]) + DBEl]

" (MY0 * {YO,Y3)) + (Xl)
" (Xl ,YOJ

edge #2
A[2] (R(21 0 PB[2]) + DBL2]

= ((Xl,XAI,YO) 0 (XlX4,YOY31) +f
- XlqX~IYO)

edge #3
A131 = (1L2J 0 PB[3]) + DBL3]

- ((Xl,X'I,O) 0 (XlXJIYOtY3)) + (I
= (Xl9XJIYO)

edge #4I
iR:3J aAE2] z (Xl ,XLIYO)
A(41] z (RL3J 0 PB1'#] + DBLLIJ

- ((xltXIIYO) I {Xl,X4)) + MY3
* XXIY)



edge 
61RE41 = A[3J {Xl XJ4 YOJ

A153 (RE[4] PB15]S + DB[5]
= ((X1,X4l9YO) 0 {yOvy3)) *(X4i)
c (X4vYo)

edge #6
AM6 = (R[4l] * PB[6]) + DBL6J

= ({X1,X4l,Yo) * YOY3)) +{X41}
= (X4,Yo)
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B. EXAMPLE OF A SAMPLE RUN

OK, run>seg fms.3

EXPER - EXPERIMENTAL MUTATION TESTING SYSTEM

TYPE "?<RET>" AT ANY TIME FOR ASSISTANCE

WHAT IS THE NAME OF THIS EXPERIMENT?
*assign
INITIAL EXPERIMENT
ENTER FILE NAMES
)assign
FILE: ASSIGN
ASSIGN
WHAT TYPES OF MUTANTS DO YOU WANT TO CREATE FOR ASSIGN
*all

157 MUTANTS CREATED FOR ASSIGN
NODE # NEW #

1 6
2 6
3 6
4 6
5 6

HEADER NODE PTR TO INTER
1 5
INTERVALS

1 2 3 4 5
NODE # NEW #

6 7
HEADER NODE PTR TO INTER

6 1
INTERVALS

6
DEFINITION TABLE

ID # NODE # SYMTAB ENTRY ARYON TYPKND FSTNUM LSTNUM
1 0 102 0 1 0 0

VALUE(INTEGER): 3
2 -1 93 0 0 0 0
3 -1 84 0 0 0 0
4 1 8J4 0 1 1 1

VALUE(INTEGER): 2
5 1 93 0 1 2 2

VALUE(INTEGER): 1
6 3 84 0 1 4 4

VALUE(INTEGER): 3
7 4 93 0 0 5 8
8 41 84 0 1 6 7

VALUE(INTEGER): 21885
---------- GRAPH # 1-----------
NODE # 1

LAST STMT # 2

' I'
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POINTER TO OUTGO 1
NODE # 2 EDGE # 1
DBSET

4 5
PBSET

1
DEFSET

4 5
PRESET

1
AVLSET

1 4 5
POINTER TO INCOM 0
RCHSET

1 2 3
PREVIOUS HEADER # 0 HEADER NODE # 1

NODE # = 2
* LAST STMT # 3

POINTER TO OUTGO 2
NODE # 3 EDGE # 2
DBSET

EMPTY
PBSET

1 2 3 4 5 6 7 8
DEFSET

4 5
PRESET

1

AVLSET
1 4 5

NODE # 4 EDGE # 3
DBSET

EMPTY
PBSET

1 2 3 4 5 6 7 8
6 DEFSET

34 5
PRESET

1
AVLSET

1 4 5
)b POINTER TO INCON I

1
RCHSET

1 4 5
PREVIOUS HEADER # 0 HEADER NODE # 1

NODE = 3
* LAST STMT # 4

POINTER TO OUTGO 4
NODE # 4 EDGE 34
DBSET

",

.. ... _ ... __ L
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6

PBSET
1 2 5 7

DEFSET
5 6

PRESET
1

AVLSET
1 5 6

POINTER TO INCOM 2
2

RCHSET
1 4 5

PREVIOUS HEADER # 0 HEADER NODE # 1

NODE # =4
LAST STMT f 8
POINTER TO OUTGO 5
NODE # 5 EDGE # 5
DBSET

7 8
PBSET

1
DEFSET

7 8
PRESET

1
AVLSET

1 7 8
POINTER TO INCOM 3

2
3

RCHSET
1 4 5 6

PREVIOUS HEADER # 0 HEADER NODE # 1

NODE I = 5
LAST STMT # 9 0
POINTER TO OUTGO 0
POINTER TO INCOM 5

4
RCHSET

1 7 8
PREVIOUS HEADER # 0 HEADER NODE # 1

DO YOU WANT TO ADD A NEW TEST CASE ?
oy

TYPE VALUES FOR VARIABLES I J
1 2

TEST CASE NUMBER 1
PARAMETERS ON INPUT
1--1II
PARAMETERS ON OUTPUT

2
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3 K=3

J 4
1:2
THE PROGRAM TOOK 47 STEPS TO EXECUTE
PLEASE VERIFY THAT THE TEST CASE IS CORRECT

I y
DO YOU WANT TO ADD A NEW TEST CASE ?
*r

APPLYING TEST CASE NUMBER 1
157 REMAINING LIVE MUTANTS

25% OF MUTANTS EXECUTED. 143/ 157 LIVE
50% OF MUTANTS EXECUTED. 135/ 157 LIVE
75% OF MUTANTS EXECUTED. 123/ 157 LIVE

100% OF MUTANTS EXECUTED. 106/ 157 LIVE
>E STA 2 - 2
>I EQ 2

>E STA 1- 2
9 >K EQ 3

>E STA 3 - 3
>K EQ 3
>I EQ 2
>J Ej 1

>E STA- 4 - 4i
>K EQ 3
>J EQ 1

>E STA 5 - 5
> POS,NONZ

>E STA 8 - 8
>I EQ 2

a >E STA 5 - 8
>K EQ 3

WHAT STATUS INFORMATION DO YOU WANT TO SEE?
Oce prog all

LISTINU THE PROGRAM UNIT PASSIGNN
WITH SPECIFIED EQUIV MUTANTS

SUBROUTINE ASSIGN
INTEGER K, J, I

* OUTPUT K
INPUT OUTPUT J, I
DATA K/3/

10 1 2

20 IF(J .LT. 0) I x 3

$48$ IF(J oLT. 0) 1 a K
$59$ I'(I °LT. 0) 1 z 3
$112* IF(J .LE. 0) I a 3

:.~L
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$119$ IF(ABS J .LT. 0) I = 3
$121$ IF(ZPUSH J .LT. 0) I 3

40 J I+K

$68$ J I + 3
$122$ J: ABS I + K
$124$ J = ZPUSH I + K
$125$ J f I + ABS K
$127$ J = I + ZPUSH K

1 1
1= 2
J I+2

$55$ J I + I
$69$ J 2 + 2
$131$ J = ABS I + 2
$133$ J = ZPUSH I + 2
$134$ J = ABS (I + 2)
$136$ J = ZPUSH (I + 2)

RETURN
END

WHAT STATUS INFORMATION DO YOU WANT TO SEE?
Om prog all
MUTANT ELIMINATION PROFILE FOR ALL PROGRAMS
MUTANT TYPE TOTAL DEAD LIVE EQUIV
CONSTANT REPLACEMENT 14 4 28.6% 10 71.4% 0 0.0%
SCALAR VARIABLE REPLACEM 22 10 15.55 12 51.55 0 0.0%
SCALAR FOR CONSTANT REP. 21 5 23.8% 14 66.o% 2 9.5%
CONSTANT FOR SCALAR REP. 15 3 20.0% 9 60.05 3 20.05
SOURCE CONSTANT REPLACEM 9 2 22.2% 7 77.8% 0 0.0%
UNARY OPERATOR INSERTION 16 5 31.3% 11 68.8% 0 0.0%
ARITHMETIC OPERATOR REPL 14 5 35.7% 9 64.3% 0 0.0%
RELATIONAL OPERATOR REPL 7 0 0.0% 6 85.7% 1 14.3%
ABSOLUTE VALUE INSERTION 18 2 11.1% 6 33.3% 10 55.6%
STATEMENT ANALYSIS 1 3 75.0% 1 25.0% 0 0.0%
STATEMENT DELETION 7 3 4l2.9% 4, 57.1% 0 0.0%
RETURN STATEMENT REPLACE 8 7 87.5% 1 12.5% 0 0.0%
DATA STATEMENT ALTERATIO 2 2 100.0% 0 0.0% 0 0.0%

WHAT STATUS INFORMATION DO YOU WANT TO SEE?
*no
DO YOU WANT TO CONTINUE THE EXPERIMENT?
on

., 0

~0
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